Do transient gravity waves in a shear flow break?

نویسندگان

  • M. Pulido
  • C. Rodas
چکیده

The propagation of transient gravity waves in a shear flow towards their critical levels is examined using a ray tracing approximation and a higher-degree (quasi-optic) approximation. Because of its transient forcing, the amplitude of transient waves decays to zero in the neighbourhood of the critical region so that it is not clear whether transient gravity waves will reach the convective instability threshold or not. The analysis shows that the horizontal perturbation decays asymptotically as the inverse of the square root of time, while the vertical wavenumber depends linearly on time, thus transient gravity waves attain convective instability for long times. The theoretical results are compared with numerical simulations. The ray path approximation is not able to reproduce the maximum amplitude, but the quasi-optic approximation gives a reasonable agreement at short and long times. There are three breaking regimes for transient gravity waves. For wave packets with a narrow frequency spectrum (quasi-steady waves) and large enough initial wave amplitude, the wave breaking is similar to the abrupt monochromatic wave overturning. On the other hand, highly transient wave packets will dissipate near the critical region for very long times with small wave amplitudes and high vertical wavenumber. The third regime is a transition between the two extremes; in this case both wave amplitude and vertical wavenumber are important to produce the convective threshold. The dependencies of the convective instability height (a quantity that may be useful for gravity wave parametrizations) on the Richardson number and the frequency spectral width are obtained. Copyright  2008 Royal Meteorological Society

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The breaking of transient inertio-gravity waves in a shear flow using the Gaussian beam approximation

The propagation of transient inertio-gravity waves in a shear flow is examined using the Gaussian beam formulation. This formulation assumes Gaussian wavepackets in the spectral space and uses a second-order Taylor expansion of the phase of the wave field. In this sense, the Gaussian beam formulation is also an asymptotic approximation like spatial ray tracing; however, the first one is free of...

متن کامل

Surface gravity waves in deep fluid at vertical shear flows

Special features of surface gravity waves in deep fluid flow with constant vertical shear of velocity is studied. It is found that the mean flow velocity shear leads to non-trivial modification of surface gravity wave modes dispersive characteristics. Moreover, the shear induces generation of surface gravity waves by internal vortex mode perturbations. The performed analytical and numerical stu...

متن کامل

Hydrodynamic stability and mode coupling in Keplerian flows: local strato-rotational analysis

Aims. We present a qualitative analysis of key (but yet unappreciated) linear phenomena in stratified hydrodynamic Keplerian flows: (i) the occurrence of a vortex mode, as a consequence of strato-rotational balance, with its transient dynamics; (ii) the generation of spiral-density waves (also called inertia-gravity or gΩ waves) by the vortex mode through linear mode coupling in shear flows. Me...

متن کامل

Gravity Waves in a Horizontal Shear Flow. Part II: Interaction between Gravity Waves and Potential Vorticity Perturbations

Interaction among potential vorticity perturbations and propagating internal gravity waves in a horizontally sheared zonal flow is investigated. In the strong stratification limit, an initial vorticity perturbation weakly excites two propagating gravity waves while the density component of the potential vorticity perturbation is significantly amplified, potentially leading to convective collaps...

متن کامل

A Buoyancy–Vorticity Wave Interaction Approach to Stratified Shear Flow

Motivated by the success of potential vorticity (PV) thinking for Rossby waves and related shear flow phenomena, this work develops a buoyancy–vorticity formulation of gravity waves in stratified shear flow, for which the nonlocality enters in the same way as it does for barotropic/baroclinic shear flows. This formulation provides a time integration scheme that is analogous to the time integrat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008